52,546 research outputs found

    Hierarchical Bayesian Modeling of Hitting Performance in Baseball

    Full text link
    We have developed a sophisticated statistical model for predicting the hitting performance of Major League baseball players. The Bayesian paradigm provides a principled method for balancing past performance with crucial covariates, such as player age and position. We share information across time and across players by using mixture distributions to control shrinkage for improved accuracy. We compare the performance of our model to current sabermetric methods on a held-out season (2006), and discuss both successes and limitations

    A solvable non-conservative model of Self-Organized Criticality

    Full text link
    We present the first solvable non-conservative sandpile-like critical model of Self-Organized Criticality (SOC), and thereby substantiate the suggestion by Vespignani and Zapperi [A. Vespignani and S. Zapperi, Phys. Rev. E 57, 6345 (1998)] that a lack of conservation in the microscopic dynamics of an SOC-model can be compensated by introducing an external drive and thereby re-establishing criticality. The model shown is critical for all values of the conservation parameter. The analytical derivation follows the lines of Broeker and Grassberger [H.-M. Broeker and P. Grassberger, Phys. Rev. E 56, 3944 (1997)] and is supported by numerical simulation. In the limit of vanishing conservation the Random Neighbor Forest Fire Model (R-FFM) is recovered.Comment: 4 pages in RevTeX format (2 Figures) submitted to PR

    Bayesian variable selection and data integration for biological regulatory networks

    Get PDF
    A substantial focus of research in molecular biology are gene regulatory networks: the set of transcription factors and target genes which control the involvement of different biological processes in living cells. Previous statistical approaches for identifying gene regulatory networks have used gene expression data, ChIP binding data or promoter sequence data, but each of these resources provides only partial information. We present a Bayesian hierarchical model that integrates all three data types in a principled variable selection framework. The gene expression data are modeled as a function of the unknown gene regulatory network which has an informed prior distribution based upon both ChIP binding and promoter sequence data. We also present a variable weighting methodology for the principled balancing of multiple sources of prior information. We apply our procedure to the discovery of gene regulatory relationships in Saccharomyces cerevisiae (Yeast) for which we can use several external sources of information to validate our results. Our inferred relationships show greater biological relevance on the external validation measures than previous data integration methods. Our model also estimates synergistic and antagonistic interactions between transcription factors, many of which are validated by previous studies. We also evaluate the results from our procedure for the weighting for multiple sources of prior information. Finally, we discuss our methodology in the context of previous approaches to data integration and Bayesian variable selection.Comment: Published in at http://dx.doi.org/10.1214/07-AOAS130 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Complex coupled-cluster approach to an ab-initio description of open quantum systems

    Get PDF
    We develop ab-initio coupled-cluster theory to describe resonant and weakly bound states along the neutron drip line. We compute the ground states of the helium chain 3-10He within coupled-cluster theory in singles and doubles (CCSD) approximation. We employ a spherical Gamow-Hartree-Fock basis generated from the low-momentum N3LO nucleon-nucleon interaction. This basis treats bound, resonant, and continuum states on equal footing, and is therefore optimal for the description of properties of drip line nuclei where continuum features play an essential role. Within this formalism, we present an ab-initio calculation of energies and decay widths of unstable nuclei starting from realistic interactions.Comment: 4 pages, revtex

    Computation of spectroscopic factors with the coupled-cluster method

    Full text link
    We present a calculation of spectroscopic factors within coupled-cluster theory. Our derivation of algebraic equations for the one-body overlap functions are based on coupled-cluster equation-of-motion solutions for the ground and excited states of the doubly magic nucleus with mass number AA and the odd-mass neighbor with mass A1A-1. As a proof-of-principle calculation, we consider 16^{16}O and the odd neighbors 15^{15}O and 15^{15}N, and compute the spectroscopic factor for nucleon removal from 16^{16}O. We employ a renormalized low-momentum interaction of the VlowkV_{\mathrm{low-}k} type derived from a chiral interaction at next-to-next-to-next-to-leading order. We study the sensitivity of our results by variation of the momentum cutoff, and then discuss the treatment of the center of mass.Comment: 8 pages, 6 figures, 3 table

    Medium-mass nuclei from chiral nucleon-nucleon interactions

    Full text link
    We compute the binding energies, radii, and densities for selected medium-mass nuclei within coupled-cluster theory and employ the "bare" chiral nucleon-nucleon interaction at order N3LO. We find rather well-converged results in model spaces consisting of 15 oscillator shells, and the doubly magic nuclei 40Ca, 48Ca, and the exotic 48Ni are underbound by about 1 MeV per nucleon within the CCSD approximation. The binding-energy difference between the mirror nuclei 48Ca and 48Ni is close to theoretical mass table evaluations. Our computation of the one-body density matrices and the corresponding natural orbitals and occupation numbers provides a first step to a microscopic foundation of the nuclear shell model.Comment: 5 pages, 5 figure

    Scaling function and universal amplitude combinations for self-avoiding polygons

    Full text link
    We analyze new data for self-avoiding polygons, on the square and triangular lattices, enumerated by both perimeter and area, providing evidence that the scaling function is the logarithm of an Airy function. The results imply universal amplitude combinations for all area moments and suggest that rooted self-avoiding polygons may satisfy a qq-algebraic functional equation.Comment: 9 page

    A classical statistical model for distributions of escape events in swept-bias Josephson junctions

    Full text link
    We have developed a model for experiments in which the bias current applied to a Josephson junction is slowly increased from zero until the junction switches from its superconducting zero-voltage state, and the bias value at which this occurs is recorded. Repetition of such measurements yields experimentally determined probability distributions for the bias current at the moment of escape. Our model provides an explanation for available data on the temperature dependence of these escape peaks. When applied microwaves are included we observe an additional peak in the escape distributions and demonstrate that this peak matches experimental observations. The results suggest that experimentally observed switching distributions, with and without applied microwaves, can be understood within classical mechanics and may not exhibit phenomena that demand an exclusively quantum mechanical interpretation.Comment: Eight pages, eight figure
    corecore